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Abstract. We study theoretically the influence of the direct and indirect Coulomb interaction on
second-harmonic generation (SHG) and difference-frequency generation (DFG) connected with
intersubband transitions in asymmetric double quantum wells. Our approach is based on the time-
dependent local density approximation. The exact analytical expressions have been derived for SHG
(in a two-subband system) and DFG (in a three-subband system) surface susceptibilities. Unlike
in our previous papers, we take into account the nonresonant terms and nonlinear dependence
of the exchange–correlation potential upon the electron density. Numerical calculations have
been performed for GaAl/AlGaAs asymmetric coupled double-quantum-well structures with small
energy separation (about 10 meV) between the ground and excited subband when the effect of the
Coulomb interaction is most pronounced and the nonresonant terms become essential. The results
obtained show that Coulomb interaction not only shifts the peak positions in SHG and DFG spectra,
but also modifies their height. The height modification can be particularly strong (even more than
one order of magnitude) in the case of the SHG. The nonlinearity of the exchange–correlation
potential is found to lead to a novel feature that cannot be ignored in a correct description of SHG
and DFG spectra. The electron-density dependence of the many-body effect is analysed. A critical
comparison of the results obtained with those reported in the literature is also given.

1. Introduction

Second-order nonlinear intersubband optical properties of asymmetric quantum wells have
been investigated experimentally and theoretically by many groups [1–10]. However, in most
of the theoretical works, the authors neglect the influence of Coulomb interaction on the
nonlinear optical response despite the fact that in the case of linear intersubband absorption
the above influence can play a very important role. Ando et al [11] have shown, employing the
time-dependent local density approximation (TDLDA), that when ground (1) and excited (2)
subbands are parabolic, the electron–electron interaction leads to a shift of the intersubband
absorption energy from the corresponding intersubband energy separation E21. This shift is
determined by:

(i) the depolarization effect (DE) (which arises from the direct Coulomb interaction and
causes an increase of the absorption energy [12]) and
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(ii) the exciton-like effect (EE) (which results from the exchange–correlation interaction and
leads to a reduction in the absorption energy [11]).

The above-mentioned shift can be particularly strong (comparable with E21) in structures with
E21 � 10 meV and large electron concentration (NS � 1011 cm−2). A coupled asymmetric
double quantum well (CADQW) [3, 4] is a typical example of such a structure.

Recently Heyman et al [3] (see also reference [4]) have shown experimentally that in
CADQWs not only the intersubband absorption peak position but also the low-energy peak
position in the SHG spectrum can be very strongly affected by the Coulomb interaction. For
interpretation of experimental results, the authors used an analytical expression for χ(2)(2ω)
derived in the two-subband limit employing the TDLDA. Unfortunately, it is not clear how
reliable this expression is because the authors did not present details of the calculations.
Moreover, the expression for χ(2)(2ω) reported in the above-mentioned references contradicts
a well known rule stating that the poles of the susceptibility should lie in the lower half
of the complex-frequency plane [13]. The SHG in two-level structures was also discussed
theoretically (in the framework of the TDLDA) by Gusmão and Mahan [5]. However, the
authors restricted consideration to numerical calculations concentrating just on the influence
of the Coulomb interaction on the low-energy peak position in SHG spectra.

The strong influence of the many-body interaction on the doubly resonant difference-
frequency-generation (DFG) spectra in CADQWs was observed experimentally by Sirtori
et al [6]. A simplified description of the above effect was given in our previous paper [9],
where the calculations were performed using the time-dependent Hartree approximation and
including only resonant terms.

In this paper we present a detailed derivation of the exact analytical expressions for

(i) the second-order susceptibility, χ(2)(2ω), connected with the SHG in two-subband
asymmetric double QWs and

(ii) the second-order susceptibility, χ(2)(ω3 = ω1 − ω2), connected with the DFG in doubly
resonant three-subband asymmetric double QWs.

Our approach is based on the TDLDA and the density matrix formulation (in the nonretarded
electric dipole approximation) employed in our previous papers [8–10]. The formulae obtained
in this work include the nonresonant terms which are shown to be essential for the correct
description for the structures with small intersubband energy interaction and cannot be ignored
as in reference [9]. Both the direct and indirect contribution to the Coulomb interaction are
included. Considering the effects induced by the indirect Coulomb interaction, we take into
account the nonlinear dependence of the exchange–correlation potential upon the electron
concentration. It is found that this nonlinearity affects the peak values of the spectra but does
not influence the peak position.

The paper is organized as follows. In section 2 we derive analytical expressions for the
SHG and DFG susceptibilities. The numerical results and detailed discussion are given in
section 3. Section 4 contains conclusions.

2. Theory

We start from the one-band effective mass Hamiltonian

Ĥ = p2/2m + VEFF(z) (1)

where m is the effective mass of an electron. In the LDA approach the electron is assumed to
move in an effective potential

VEFF(z) = VCONF(z) + VH(z) + VXC(z)
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where VCONF(z) determines the shape of the confining quantum well potential, VH(z) is the
electrostatic Hartree potential, and VXC(z) denotes the exchange–correlation potential energy.
We adopt a standard parametrized form (originally due to Gunnarson and Lundqvist [14]) for
this potential:

VXC(z) = −
[

1 + 0.7734X(z) ln

(
1 +

1

X(z)

)
2 Ryd∗

παrs(z)

]
where

rs(z) = [4πa3
∗n(z)/3]−1/3

X(z) = rs(z)/21

α = (4/9π)1/3.

Also,

a∗ = 4πε0εh̄
2/me2

is the effective Bohr radius,

Ryd∗ = me4/2(4πε0εh̄)
2

is the effective Rydberg, ε is the averaged dielectric constant, and n(z) is the electron density.
The eigenfunction of Hamiltonian (1) can be written as |i,k‖〉 = exp(ik‖r‖)ϕi(z) where

k‖ and r‖ are the wave vector and the position vector in the x–y plane, respectively. ϕi(z) is a
solution of the one-dimensional Schrödinger equation

[p2
z /2m + VEFF(z)]ϕi(z) = Eiϕi(z)

where Ei is the minimum energy of the ith subband. In this paper we neglect, for simplicity,
the position and energy dependence of the effective mass. Thus, ϕi(z) and the intersubband
energy, Eij = Ei − Ej , can be treated as independent of k‖.

The equation of motion for the matrix elements of the density matrix ρ (in the rep-
resentation of |i,k‖〉 (i = 1, 2, 3)) is given by

∂ρij

∂t
= 1

ih̄
[Ĥ + "V, ρ]ij − "ρij

τij
(2)

where "V ≡ "V (z, t) is the effective perturbing Hamiltonian, τ−1
ii is the relaxation rate

from the ith subband, τ−1
ij = τ−1

ji is the off-diagonal elastic dephasing rate connected with
i → j transitions, "ρ = ρ − ρ(0), and ρ(0) is the unperturbed density matrix. The diagonal
element ρ(0)

jj ≡ ρ
(0)
jk‖jk‖ is equal to the thermal equilibrium occupation probability, Fj (k‖), of

the corresponding state. The equilibrium surface density of the electrons in the j th subband
is given by

Nj = 2
∑
k‖

Fj (k‖).

Note that in the approximation used here, ρik‖jk′
‖ = δk‖,k′

‖ρik‖jk‖ .
The electric field, E(t), of the pumped radiation modifies the density distribution of

electrons. (Because we are interested in the SHG and DFG connected with intersubband
optical transitions, we take into account only the z-component of the electric field of the
radiation.)

The change of the electron distribution "n(z, t) = n(z)−n0(z) (n0(z) is the unperturbed
electron distribution) can be expressed through the density matrix as

"n(z, t) = 2 Tr["ρ δ(z − z′)]. (3)
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The modification of the carrier distribution leads to the modification of the effective
perturbing potential, "V (z, t), which in the electrostatic limit can be written in the form

"V (z, t) = "VEXT(z, t) + "VH(z, t) + "VXC(z, t) (4)

where "VH(z, t) takes into account the direct Coulomb interaction whereas "VXC(z, t)

describes the exchange–correlation interaction [11].
As in most previous papers, we assume that the external perturbation, "VEXT(z, t) =

eE(t)z, is small. In this limit, a self-consistent solution of equations (2)–(4) can be obtained
perturbatively by expanding "ρ, "V , and "n (generally denoted as "X) in powers of the
external electric field E as

"X(z, t) =
∑
n>0

X(n)(z, t). (5)

Substituting equation (5) into equation (2) and using the usual iterative method we get

∂ρ
(n)
ij

∂t
= 1

ih̄
[Ĥ , ρ(n)]ij +

1

ih̄

n∑
k>0

[V (k), ρ(n−k))]ij − ρ
(n)
ij

τij
. (6)

The surface electronic polarization, Ps(t), can also be a series expansion like equation (5).
The nth-order term, P (n)

s (t), is connected with ρ(n) by the relation [1]

P (n)
s (t) = −e

ε0
Tr[ρ(n)(z, t)z]. (7)

2.1. Second-harmonic susceptibility

First we consider the SHG in ACDQW structures whose energy spectrum can be approximated
by a two-subband model, i.e., we assume that E21 � El2 (l > 2). The electric field of pumped
radiation is taken in the form E(t) = Ẽ exp(−iωt) + c.c.. This implies that

"VEXT(z, t) = V (ext)(z, ω) exp(−iωt)

where V (ext)(z, ω) = eẼz.
When for simplicity we neglect the rectification effect, then

X(n)(z, t) = X(n)(z,*n) exp(−i*nt)

where *n = nω (n = 1, 2). (The validity of this approximation is discussed at the end of
section 3.1.) Thus, a second-order correction to the surface electronic polarization can be
written as

P (2)
s (t) = ε0χ

(2)(2ω)Ẽ2 exp (−i 2ωt) + c.c. (8)

where χ(2)(2ω) is the SHG surface susceptibility.
From equations (8) and (7) we find that

χ(2)(2ω) = −e

ε0Ẽ2

∑
i,j

ρ̄
(2)
ij (2ω)zji = −e

ε0Ẽ2
[ρ̄(2)(2ω)z21 + ρ̄

(2)
11 (2ω)z11 + ρ̄

(2)
22 (2ω)z22] (9)

where

zij = zji =
∫ ∞

−∞
ϕi(z)zϕj (z) dz

ρ̄
(n)
ij (*n) = 2

∑
k‖

ρ
(n)
ij (*n)

ρ̄(n)(*n) = ρ̄
(n)
12 (*n) + ρ̄

(n)
21 (*n).
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Employing equations (5) and (6) we get

ρ̄
(n)
ij (*n) = 1

h̄*n + i+ij − Eij

n∑
k>0

[V (k)(z,*k), ρ̄
(n−k)(z,*n−k)]ij (10)

with +ij = h̄τ−1
ij .

In the quasi-static approximation, the direct Coulomb contribution to the nth-order
effective potential, V (n)(z,*n), can be written in terms of n(n)(z,*n):

V
(n)

H (z,*n) = − e2

ε0ε∞

∫ z

−∞
dz′

∫ z′

−∞
dz′′ n(n)(z′′, *n). (11)

Expanding VXC[n(z, t)] in powers of "n(z, t) up to second order, we find that the contribution
to V (n)(z,*n) (n = 1, 2) connected with exchange–correlation potential is given by [5]

V
(n)

XC (z,*n) = V ′
XC(z)n

(n)(z,*n) +
1

2
V ′′

XC(z)[n
(1)(z, ω)]2δn2 (12)

where V ′
XC(z), (V

′′
XC(z)) is the first (second) functional derivative of VXC(z) with respect to

the equilibrium density distribution of the electrons. It must be emphasized that the second
term in the above equation arises due to a nonlinear dependence of the exchange–correlation
potential upon the sheet electron density. Since this term does not appear when we consider the
linear response, we call it an ‘additional driving term’ (ADT). Equation (12) shows that it is the
nonlinearity (or ADT) by means of which the first-harmonic of electron-density modification,
n(1)(z, ω), influences the second harmonic of the effective perturbing potential, V (2)(z, 2ω).
Note that in this paper we work in a standard static approximation, i.e. we neglect the frequency
dependence of the exchange–correlation potential (for details, see reference [15]).

Using equations (3), (11), and (12) we find the following expression for the matrix elements
of V (n)(z,*n):

V
(n)
ij (*n) = V

(ext)
ij (ω)δ1n +

∑
k,l

γ (i, j ; k, l)ρ̄(n)
kl (*n) + Z(i, j ;ω)δ2n (13)

where

γ (i, j ; k, l) = α(i, j ; k, l) + β(i, j ; k, l) (14)

with

α(i, j ; k, l) = e2

ε0ε∞
L(i, j ; k, l)

and

L(i, j ; k, l) =
∫ ∞

−∞
dz

[∫ z

−∞
dz′ ϕi(z

′)ϕj (z
′)
] [∫ z

−∞
dz′ ϕk(z

′)ϕl(z
′)
]

(15)

β(i, j ; k, l) =
∫ ∞

−∞
dz ϕi(z)ϕj (z)ϕk(z)ϕl(z)V

′
XC(z) (16)

Z(i, j ;ω) = 1

2

∫ ∞

−∞
dz ϕi(z)ϕj (z)V

′′
XC(z)

[∑
k,l

ρ̄
(1)
kl (ω)ϕk(z)ϕl(z)

]2

. (17)

One can check that

Z(1, 2;ω) = Z(2, 1;ω) = [
ρ̄(1)(ω)

]2
Z̄(1, 2) (18)

where

Z̄(1, 2) = Z̄(2, 1) = 1

2

∫ ∞

−∞
dz [ϕ1(z)ϕ2(z)]

3 V ′′
XC(z). (19)
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Equations (10) and (13) form a set of algebraic equations for ρ̄(n)
ij (*n). Their application for

n = 1 yields

ρ̄
(1)
ij (ω) = NijV

(1)
ij (ω)

Eij − h̄ω − i+
= Nij

Eij − h̄ω − i+

[
V

(ext)
ij (ω) + γ (1, 2; 1, 2)ρ̄(1)(ω)

]
(20)

where Nij = Ni − Nj and + = +12.
The expression for ρ̄(1)(ω), resulting from the above equation, can be written as

ρ̄(1)(ω) = −2N12 V
(ext)

12 (ω)E21

Ẽ2
21 − (h̄ω + i+)2

(21)

where

Ẽ21 = E21[1 + 2γ (1, 2; 1, 2)N12/E21]1/2

is the intersubband energy shifted by the DE and the EE [11].
Employing equations (13)–(21), we find after some manipulations that

V
(1)
ij (ω) = V

(ext)
ij (ω) + γ (1, 2; i, j)ρ̄(1)(ω) = V

(ext)
ij (ω)Cij (ω) (22)

with

Cij (*n) = E2
21 − (h̄*n + i+)2

Ẽ2
21 − (h̄*n + i+)2

i �= j (23)

and

Cii(*n) = E′2
ii − (h̄*n + i+)2

Ẽ2
21 − (h̄*n + i+)2

(24)

where

E′2
ii = E2

21

{
1 + 2

[
γ (1, 2; 1, 2) − γ (1, 2; i, i) z12

zii

]
N12

E21

}
.

(We assume here that zii �= 0.)
Taking n = 2 and assuming for simplicity that +11 = +22 = +̄, we get from equations

(10) and (13) the following relations:

ρ̄
(2)
11 (2ω) = V

(1)
12 (ω)[ρ̄(1)

21 (ω) − ρ̄
(1)
12 (ω)]

2h̄ω + i+̄
= −2[V (ext)

12 (ω)]2N12

2h̄ω + i+̄

(h̄ω + i+̄)[E2
21 − (h̄ω + i+)2]

[Ẽ2
21 − (h̄ω + i+)2]2

(25)

ρ̄
(2)
22 (2ω) = −ρ̄

(2)
11 (2ω) (26)

and

ρ̄(2)(2ω) = 2E21γ21ρ̄
(2)
11 (2ω)N12

Ẽ2
21 − (2h̄ω + i+)2

− 2Z(1, 2;ω)N12E21

Ẽ2
21 − (2h̄ω + i+)2

− [V (1)
22 (ω) − V

(1)
11 (ω)]

(E21 + 2h̄ω + i+)ρ̄(1)
21 (ω) + (E21 − 2h̄ω − i+)ρ̄(1)

12 (ω)

Ẽ2
21 − (2h̄ω + i+)2

(27)

where γ21 = γ (1, 2; 2, 2) − γ (1, 2; 1, 1).
Substitution of equations (25), (26), and (27) into equation (9) gives the final expression

for the second-harmonic susceptibility in the TDLDA as a sum of three terms which represent
different aspects of the electron–electron interaction effect:

χ(2)(2ω) = χ
(2)
(A)(2ω) + χ

(2)
(B)(2ω) + χ

(2)
(C)(2ω) (28)
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where

χ
(2)
(A)(2ω) = −2e3N12z

2
12(z22 − z11)[E2

21 − (h̄ω + i+)2]

ε0[Ẽ2
21 − (h̄ω + i+)2]2

×
[
E2

21 + (2h̄ω + i+)(h̄ω + i+)

Ẽ2
21 − (2h̄ω + i+)2

Ẽ2
21 − (h̄ω + i+)2

E2
21 − (h̄ω + i+)2

+
h̄ω + i+

2h̄ω + i+̄

]
(29)

χ
(2)
(B)(2ω) = e3N2

12z
3
12γ212E21[E2

21 − (h̄ω + i+)2]

ε0[Ẽ2
21 − (h̄ω + i+)2]2[Ẽ2

21 − (2h̄ω + i+)2]

×
[
E2

21 + (2h̄ω + i+)(h̄ω + i+)

E2
21 − (h̄ω + i+)2

+
h̄ω + i+

2h̄ω + i+̄

]
(30)

and

χ
(2)
(C)(2ω) = 8e3N3

12z
3
12Z̄12E

3
21

ε0[Ẽ2
21 − (h̄ω + i+)2]2[Ẽ2

21 − (2h̄ω + i+)2]
. (31)

The first term in equation (28), χ(2)
(A)(2ω), plays dominant role only in the range of small electron

concentration. In the one-electron limit ("V (z, t) = "VEXT(z, t)) it reduces to the expression
derived by Tsang et al [7]:

χ
(2)
(0) (2ω) = −2e3N12z

2
12(z22 − z11)

ε0[E2
21 − (h̄ω + i+)2]

[
E2

21 + (2h̄ω + i+)(h̄ω + i+)

E2
21 − (2h̄ω + i+)2

+
h̄ω + i+

2h̄ω + i+̄

]
. (32)

The last two terms in equation (28) arise due to a many-body interaction. They become
important at higher electron concentrations since χ

(2)
(B)(2ω) ∝ N2

12 and χ
(2)
(C)(2ω) ∝ N3

12.

The second term, χ
(2)
(B)(2ω), results from the coupling between the intersubband and

intrasubband transitions induced by V
(1)

H (z, ω) and V
(1)

XC (z, ω). The strength of this coupling
is controlled by factor γ21 (see equation (22)).

The third term, χ
(2)
(C)(2ω), has its origin directly in the nonlinearity of the exchange–

correlation potential. (More exactly, it appears due to the presence of the ADT in the expression
for V (2)

XC (z, 2ω)). Equation (31) shows that inclusion of the ADT affects only the peak value
of the SH susceptibility and does not affect the resonance photon energies at all. It is a
new feature of the exchange–correlation interaction. The physical reason for this is that the
resonance condition Ẽ21 = h̄ω (Ẽ21 = 2h̄ω) is affected only by n(1)(z, ω) through V (1)(z, ω)

(n(2)(z, 2ω) through V (2)(z, 2ω)). The role of the ADT (i.e. the nonlinearity) is to take into
account the influence of n(1)(z, ω) on V (2)(z, 2ω). Thus, by definition, the nonlinearity cannot
affect the resonance conditions. The above facts lead us to the conclusion that, in contrast
with that of the linear response, the influence of the exchange–correlation interaction on the
SH susceptibility cannot be considered as a simple correction to the DE.

The commutation of any function f = f (z, t) with z results in the following relation:

(f22 − f11)/f12 = (z22 − z11)/z12

where fij = 〈i|f |j〉. Employing this relation for the function γ (1, 2; i, j), the expression for
χ(2)(2ω) can be transformed to the following form:

χ(2)(2ω) = −2e3N12z
2
12(z22 − z11)

ε0

[E2
21 − (h̄ω + i+)2]

[Ẽ2
21 − (2h̄ω + i+)2][Ẽ2

21 − (h̄ω + i+)2]2

× E2
21

[
1 +

h̄ω + i+

2h̄ω + i+̄
+
(2h̄ω + i+)(h̄ω + i+)

E2
21

i(+̄ − +)

2h̄ω + i+̄

]
+ χ

(2)
(C)(2ω). (33)
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By using the facts that + � h̄ω and (h̄ω + i+)/(2h̄ω + i+̄) is practically equal to 1/2 for the
near-resonance regime, the above equation can be simplified to

χ(2)(2ω) = −e3N12z
2
12(z22 − z11)

ε0

3E2
21[E2

21 − (h̄ω + i+)2]

[Ẽ2
21 − (2h̄ω + i+)2][Ẽ2

21 − (h̄ω + i+)2]2
+ χ

(2)
(C)(2ω).

(34)

Now we compare our expression for χ(2)(2ω) with that reported by Heyman et al [3]
given by

χ(2)(2ω) = −e3N12z
2
21(z22 − z11)

ε0

3(E21 + i+)2[(E21 + i+)2 − (h̄ω)2]

[(Ẽ21 + i+)2 − (2h̄ω)2][(Ẽ21 + i+)2 − (h̄ω)2]2
. (35)

The difference between equation (35) and our formula, equation (34), is readily seen. As
was mentioned in section 1, equation (35) has a drawback: it contradicts the well known
rule stating that the poles of the susceptibility should lie in the lower half of the complex-
frequency plane [13]. This feature is responsible for incorrect sign of Im[χ(2)(2ω)] predicted
by equation (35). It is important to note that, as a result, equation (35) does not reduce in
the one-electron limit to that derived by Tsang et al. Nevertheless, in this limit the difference
between the numerical values of |χ(2)(2ω)| predicted by equation (35) and the expressions
given by Tsang et al is negligibly small for CADQW. Also, for the parameters used in our
paper, the numerical difference of |χ(2)(2ω)| predicted by equation (35) and our simplified
equation (34) with χ

(2)
(C)(2ω) = 0 can be ignored.

2.2. Difference-frequency-generation susceptibility

Now we derive the expression for the doubly resonant DFG susceptibility connected with
the intersubband transitions in three-subband asymmetric double-QW structures. The electric
field of the incident radiation is taken in the form

E(t) = Ẽ(ω1) exp(−iω1t) + Ẽ(ω2) exp(−iω2t) + c.c.

where ω1 and ω2 (<ω1) are angular frequencies of pumped waves. To be close to experiment,
we assume that the structure is similar to that studied by Sirtori et al [6], i.e., E21 � E32 ≈ h̄ωt

(t = 1, 2). For simplicity, we also assume that only the ground subband is occupied
(Ni = δ1iNS). The surface second-order electronic polarization oscillating with the difference
frequency ω3 = ω1 − ω2 takes the form

P (2)
s (t) = ε0χ

(2)(ω3)Ẽ(ω1)Ẽ
∗(ω2) exp(−iω3t) + c.c. (36)

where χ(2)(ω3) is the second-order susceptibility associated with the DFG.
From equations (36) and (7) we find that

χ(2)(ω3) = −e

ε0Ẽ(ω1)Ẽ∗(ω2)
Tr[ρ(2)(z, ω3)z] = −ez12

ε0Ẽ(ω1)Ẽ∗(ω2)
ρ̄(2)(ω3) (37)

where ρ̄(2)(ω3) = ρ̄
(2)
12 (ω3) + ρ̄

(2)
21 (ω3).

Starting from equation (6) and performing manipulations similar to that used in the case
of SHG (see also reference [9]), we get

ρ
(1)
ij (ωt ) = V

(1)
ij (ωt )(ρ

(0)
jj − ρ

(0)
ii )

Eij − h̄ωt − i+ij

(38)

for t = 1, 2, and

ρ
(2)
ij (ω3) = [(V (1)(z, ω2))

∗, ρ(1)(z, ω1)]ij + V
(2)
ij (ω3)(ρ

(0)
jj − ρ

(0)
ii )

Eij − h̄ω3 − i+ij

. (39)
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The direct and exchange–correlation contributions toV (1)(z, ωt ) andV (2)(z, ω3) can be written
in the form

V
(1)

H (z, ωt ) = − e2

ε0ε∞

∫ z

−∞
dz′

∫ z′

−∞
dz′′ n(1)(z′′, ωt ) (40)

V
(1)

XC (z, ωt ) = V ′
XC(z)n

(1)(z, ωt ) (41)

and

V
(2)

H (z, ω3) = − e2

ε0ε∞

∫ z

−∞
dz′

∫ z′

−∞
dz′′ n(2)(z′′, ω3) (42)

V
(2)

XC (z, ω3) = V ′
XC(z)n

(2)(z, ω3) + V ′′
XC(z)n

(1)(z, ω1)[n
(1)(z, ω2)]

∗. (43)

The second term in equation (43) results from the nonlinear dependence of the exchange–
correlation potential upon the sheet electron density. Thus, similarly to the case for the SHG,
we call this term the ADT. The ADT (or nonlinearity) takes into account the influence of the
first harmonics of the electron-density modification, n(1)(z, ω1) and n(1)(z, ω2), on the second
harmonic of the effective perturbing potential, V (2)(z, ω3).

The matrix elements of V (1)(z, ωt ) and V (2)(z, ω3) obey the following relations:

V
(1)
ij (ωt ) = V

(ext)
ij (ωt ) +

∑
k,l

γ (i, j ; k, l)ρ̄(1)
kl (ωt ) (44)

V
(2)
ij (ω3) =

∑
k,l

γ (i, j ; k, l)ρ̄(2)
kl (ω3) + Zd(i, j) (45)

where γ (i, j ; k, l) is given by equation (14), while

Zd(j, i) =
∫ ∞

−∞
dz ϕi(z)ϕj (z)V

′′
XC(z)

×
[∑

k,l

ϕk(z)ϕl(z)ρ̄
(1)
kl (ω1)

] [∑
k,l

ϕk(z)ϕl(z)[ρ̄
(1)
kl (ω2)]

∗
]
. (46)

Calculating matrix elements of ρ(1), we employ the fact that only the resonant term can
be considered when h̄ω1 is close to E31 and the Coulomb correction to the resonance energy
corresponding to the 1 → 3 transitions is small. This term has the following form:

ρ̄
(1)
31 (ωt ) = − V

(1)
31 (ωt )NS

E31 − h̄ωt − i+31
. (47)

The second-order terms resulting from equation (39) are given by

ρ̄
(2)
21 (ω3) = − [V (1)

23 (ω2)]∗ρ̄
(1)
31 (ω1) + V

(2)
21 (ω3)NS

E21 − h̄ω3 − i+21
(48)

and

ρ̄
(2)
12 (ω3) = − V

(2)
12 (ω3)NS

E21 + h̄ω3 + i+21
. (49)

Note that in reference [9], only resonant term [ρ̄(2)
21 (ω3)] was taken into account. Omission of

the off-resonant term ρ̄
(2)
12 (ω3) has a good justification only when Ẽ21 − E21 � E21.

From equations (44) and (45), we get the following expressions for the matrix elements
appearing in equations (47)–(49):

V
(1)

31 (ωt ) = V
(ext)

31 (ωt ) + γ (3, 1; 3, 1)ρ̄(1)
31 (ωt ) (50)



8276 V Bondarenko and M Załużny

V
(1)

32 (ω2) = V
(1)

23 (ω2) = V
(ext)

32 (ω2) = eẼ(ω2)z23 (51)

and

V
(2)

12 (ω3) = V
(2)

21 (ω3) = γ (1, 2; 2, 1)ρ̄(2)(ω3) + Z̄d ρ̄
(1)
31 (ω1)[ρ̄

(1)
31 (ω2)]

∗ (52)

with

Z̄d =
∫ ∞

−∞
dz ϕ3

1(z)ϕ2(z)ϕ
2
3(z)V

′′
xc(z). (53)

After some algebra, we obtain the expression for ρ̄(2)(ω3) as

ρ̄(2)(ω3) = e2Ẽ(ω1)Ẽ
∗(ω2)z12z31NS

(Ẽ21 − h̄ω3 − i+21)(Ẽ31 − h̄ω1 − i+31)
D(ω2, ω3) (54)

with

D(ω2, ω3) = E21 + h̄ω3 + i+21

Ẽ21 + h̄ω3 + i+21

− 2Z̄dN
2
SE21z31/z23

(Ẽ21 + h̄ω3 + i+21)(Ẽ21 + h̄ω2 + i+21)
(55)

where

Ẽ21 = E21[1 + 2γ (1, 2; 1, 2)NS/E21]1/2

Ẽ31 = E31 + γ (1, 3; 1, 3)NS.

The final expression for χ(2)(ω3) takes the form

χ(2)(ω3) = −e3NS

ε0

z12z23z31

(Ẽ21 − h̄ω3 − i+21)(Ẽ31 − h̄ω1 − i+31)
D(ω2, ω3). (56)

The second term in the expression for D(ω2, ω3) comes into being solely due to the ADT.
Naturally, for the same reason as for the SHG, the ADT does not affect the resonance condition
for χ(2)(ω3). We have checked numerically that, in contrast with the case for SHG, this term
has a negligible influence on the spectral shape of χ(2)(ω3). Employing this fact, we can make
the following approximation:

D(ω2, ω3)
∼= D(ω3) = E21 + h̄ω3 + i+21

Ẽ21 + h̄ω3 + i+21

. (57)

If the depolarization correction is small ((Ẽ21 − E21) � E21), the above function can be
replaced by unity. In this limit,

χ(2)(ω3) = −e3NS

ε0

z12z23z31

(Ẽ21 − h̄ω3 − i+21)(Ẽ31 − h̄ω1 − i+31)
. (58)

Since (Ẽ21 −E21) � E21, the intersubband resonance energy appearing in the above equation
can be approximated by

Ẽ21 = E21[1 + γ (1, 2; 1, 2)NS/E21].

Note that in the Hartree approximation, i.e. when only direct Coulomb interaction is con-
sidered, the above expression for χ(2)(ω3) reduces to that derived in our previous paper [9].

Making in equation (58) the substitution Ẽi1 → Ei1, we get a well known one-electron
formula for the doubly resonant difference-mixing-frequency susceptibility [6].
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3. Numerical results and discussion

Numerical calculations reported in this paper have been performed for modulation-doped
CADQWs (similar to that studied in reference [3]), with 85 Å and 75 Å GaAs wells separated by
a 25 Å Al0.3As0.7Ga barrier (see the inset in figure 1). We have used the following parameters:
the conduction band offset δEc = 233 meV; the electron effective masses m = 0.066 m0 (the
same for the wells and barriers). The dephasing parameters were taken to be +1i = 0.42 meV
(i = 1, 2, 3) unless otherwise stated and +̄ = 0.1 meV. For simplicity, we restrict consideration
to the case where only the ground subband is occupied.

0.5 1.0 1.5 2.0 2.5 3.0
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E1en
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gy
 (

m
eV

)

NS (1011 cm-2)

Figure 1. Dependences of Ẽ21 andE21 onNS . For comparison, we present also theNS -dependence
of h̄ωH

res (squares) and h̄ωL
res (circles). The inset shows the energy band diagram of the CADQW

structure with NS = 2.5 × 1011 cm−2. Shown are the positions of the calculated energy levels:
E1 = 35 meV, E2 = 47 meV, E3 = 144 meV, E4 = 187 meV.

3.1. SHG spectra

Figure 1 presents the electron-density dependence of E21 and Ẽ21 in the above-mentioned
structure. From this figure we find that the intersubband resonance energy Ẽ21 increases with
NS due to many-body effects despite the fact that the bare intersubband gap E21 decreases with
increasing NS . At large electron concentration, the difference between Ẽ21 and E21 becomes
substantial, and therefore we can expect a very strong influence of the Coulomb interaction on
the spectral shape of the SHG susceptibility. This suggestion is supported by figure 2 which
shows the spectral shape of |χ(2)(2ω)|2 for the structure with NS = 2.5 × 1011 cm−2. The
lower (L) and higher (H ) resonance photon energies are denoted by h̄ωL

res and h̄ωH
res, resp-

ectively. It is important to note that h̄ωL
res (h̄ωH

res) practically coincides with Ẽ21/2 (Ẽ21) (see
figure 1).

Inspection of figure 2 shows that, in contrast with the case for linear intersubband
absorption, not only the position but also the height of theL- andH -peaks in the SHG spectrum
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Figure 2. Spectral dependences of |χ(2)(2ω)|2 in: the TDLDA (thick solid line), the TDLDA
but without the ADT (thin solid line), the Hartree approximation (dash–dot line), the one-electron
approximation (dashed line), the simplified equation (34) without the ADT (dotted line). The inset
shows the detailed behaviour of |χ(2)(2ω)|2 for ω near ωL

res.

(i.e. |χ(2)(2ω)|2max = |χ(2)(2ωL,H
res )|2) is strongly modified by the Coulomb interaction. Our

numerical results reveal that the modification of the peaks is essentially different. Many-body
interaction dramatically reduces the height of the L-peak and enhances the height of the H -
peak. (Note that the Coulomb interaction practically does not affect the width of the peaks.) The
numerical calculations indicate that the above-mentioned modification is particularly strong
in the case of the L-peak and high electron concentration (see figures 3 and 4). For example,
at NS ≈ 3 × 1011 cm−2 the height of the L-peak is reduced by more than two orders of
magnitude while the H -peak is enhanced by up to about one order of magnitude with respect
to the one-electron result. It should be stressed that the peak height modification is determined
mainly by the direct Coulomb interaction.

It is important to note that, due to the Coulomb interaction, the height of the L-peak is
not a monotonic function of NS , as it is in the one-electron approach (see figure 3). There is
some optimum electron concentration (N∗

S ) at which the SHG is maximal. (In the structure
considered, N∗

S ≈ 1.1 × 1011 cm−2.)
Inspection of numerical results leads to an interesting conclusion that the modification of

the H -peak is much more sensitive to the value of the line broadening parameter + than the
modification of theL-peak (see figure 4). This difference is revealed best in theNS-dependence
of the factor

RSHG = |χ(2)
max(2ω)|2/|χ(2)

(0),max(2ω)|2
which determines the strength of the peak modification induced by the Coulomb interaction.
The insets in figure 4 present theNS-dependence of this factor forH -peaks (RH

SHG) andL-peaks
(RL

SHG) for different values of+ (taken as a constant dependent uponNS). (TheNS-dependence
of + was recently reported by Williams et al [16].) One can see that RL

SHG, being less than
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Figure 3. The height of the L-peak (a) and that of the H -peak (b) versus NS . The meaning of the
lines is the same as in figure 2.

1, decreases nearly exponentially with increasing electron concentration and is practically
independent of +. The behaviour of RH

SHG, which is bigger than 1, is quite different. It
increases with increasing NS (when NS is not too large) and decreases very slowly with further
increase of +. Unfortunately, the experimental verification of this feature for the H -peak
would be a major challenge, since h̄ωH

res practically coincides with the intersubband resonant
energy Ẽ21. (Since +̄ � Ẽ21, the dependence of χ(2)(2ω) on +̄ is negligibly small. The
term (h̄ω + i+)/(2h̄ω + i+̄) in equations (29) and (30) can be replaced by 1

2 . Our numerical
calculations verify that this approximation works very well.)

The numerical results presented in figure 3 illustrate also our previous statement that
inclusion of the ADT affects only the height of the peaks. The modification of the peak height
induced by the ADT is substantial and cannot be ignored when we study the influence of the
indirect interaction on SHG spectra.

It is pertinent to note that the direct and indirect Coulomb interactions are shown to be
always competing in their effect on the position and height of the L- and H -peaks.

Finally, we should make some remarks about the validity of our approach. We suppose
that the range of power of the incident radiation considered lets us restrict to a second-order
correction in equation (8) and neglect the rectification (see reference [17]). Indeed our results
on the shift of the L-peak coincide with the experimental results of Sherwin et al [4], while
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Figure 4. Dependences of |χ(2)(2ω)|2max and the factor RSHG (insets) on NS for the L-peak (a) and
H -peak (b) calculated for different values of the broadening parameter +: 0.22 meV (solid line),
0.42 meV (dashed line), 0.62 meV (dash–dot line), and + increasing linearly from 0.22 meV (at
NS = 0.5 × 1011 cm−2) to 0.62 meV (at NS = 3.0 × 1011 cm−2) (squares).

the L-peak-value reduction is in qualitative agreement with reference [4] (direct comparison
is impossible, because in reference [4] NS was changed by an applied voltage which changed
also other parameters of the quantum structure). However, as mentioned in reference [4],
since the excitation is resonant and saturation is expected to occur, the H -peak of the second
harmonic will be difficult to detect. Nevertheless, this problem may be solved by working at
higher temperature [4].

3.2. DFG spectra

The spectral shapes of |χ(2)(ω3)|2 for the CADQW with NS = 2.5×1011 cm−2 and h̄ω1 = Ẽ31

are presented in figure 5. We find that due to the Coulomb interaction, the peak position is
shifted (from E21 to Ẽ21) and the peak height is reduced. (Note that approximate equation (58)
does not predict the peak reduction.) The reduction is controlled by the factor

RDFG = |D(ω3 = Ẽ21/h̄)|2.
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Figure 5. Spectral dependences of |χ(2)(ω3)|2 in: the TDLDA without the ADT (thick solid line)
(inclusion of the ADT has practically no effect), the Hartree approximation (dash–dot line), the
one-electron approximation (dashed line). The inset shows the NS -dependence of the factor RDFG.

The inset in figure 5 presents the NS-dependence of RDFG. We see that as long as (Ẽ21 −
E21)/E21 < 1, the above-mentioned peak reduction is rather small and can be neglected in
the first approximation. Experimental results of reference [6] confirm qualitatively our results
on the position shift and value reduction of the peak (quantitative comparison is impossible
because of the uncertainty of the measurement accuracy pointed out in reference [6]).

4. Conclusions

In this paper we have considered, employing the TDLDA, the influence of the direct and indirect
Coulomb interaction on the singly resonant SHG and the doubly resonant DFG in asymmetric
double-quantum-well structures. We have found that (in contrast with our previous results [9])
the nonresonant terms must be taken into account when describing the Coulomb interaction
effect in CADQWs with small subband separation. The many-body interaction is shown
to affect the position as well as the height of the peaks in both spectra. The peak height
modification is found to be particularly strong (even two orders of magnitude) in the case of
the SHG. The low- (high-) energy peak is suppressed (enhanced) by the many-body effect
with growing sheet electron density. A novel feature of the influence of the indirect Coulomb
interaction connected with nonlinearity of the exchange–correlation potential is found: the
nonlinearity induces a considerable change of the peak value and does not affect the peak
position. Inclusion of this effect is essential for the correct description of the above-mentioned
peak height modification in SHG spectra.
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